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Introduction 

Protein Structure Prediction 
Protein structure prediction is a computational approach that aims to determine the 

three-dimensional structure of proteins based solely on their amino acid sequences. This process 

involves sophisticated algorithms that analyze the linear sequence of amino acids (primary 

structure) to predict how the protein will fold into secondary structures (alpha-helices and 

beta-sheets), arrange into a complete three-dimensional shape (tertiary structure), and potentially 

interact with other protein subunits (quaternary structure). As proteins function primarily through 

their three-dimensional conformations, accurate prediction methods provide crucial insights into 

how these molecules operate within biological systems. 

The importance of protein structure prediction cannot be overstated in modern biological 

research and medicine. Errors in protein folding are directly linked to numerous diseases, 

including Sickle Cell Anemia, Alzheimer's, and various cancers. By accurately predicting protein 

structures, scientists can better understand the molecular mechanisms behind these conditions 

and develop targeted therapeutic approaches. Additionally, structure prediction accelerates drug 

discovery by enabling structure-based drug design without the need for expensive and 

time-consuming experimental methods like X-ray crystallography. This computational approach 

allows researchers to screen potential drug candidates more efficiently, significantly reducing the 

cost and time required for pharmaceutical development. 

CASP 

The Critical Assessment of Protein Structure Prediction (CASP) [7] is a community-wide 

experiment that serves as the gold standard for evaluating the state of the art in protein structure 

prediction. Held biennially since 1994, CASP provides an objective testing ground where 

research groups blindly predict the structures of proteins that have been experimentally 

determined but not yet publicly released. The competition aims to establish the current 

capabilities in the field, identify recent progress, and highlight areas where future research efforts 

should be focused. As the most reputable evaluation platform in the field, high-scoring 

algorithms in CASP gain significant credibility within the scientific community. Recent CASP 

competitions have showcased remarkable advancements in AI-based prediction methods, 

revolutionizing the field and bringing unprecedented accuracy to protein structure modeling. 
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Algorithmic Background 

The algorithms that we chose to compare are the AlphaFold2, RoseTTAFold, ESMFold, 

and I-TASSER algorithms. These all are tertiary protein structures prediction models that use AI 

to produce more accurate results. These are all critically acclaimed algorithms [1] - [4] which 

will help us to compare the top algorithms that are used in the field of tertiary protein structure 

prediction. 

The AlphaFold2 model is created by google. It utilizes deep learning and transformer 

neural networks to predict protein folding. The algorithm had unmatched accuracy in CASP14 

[1] and it can predict novel folds without templates. Although, it requires extensive 

computational resources and lacks transparency in some algorithmic processes. 

The RoseTTAFold algorithm was developed by the University of Washington’s Baker 

Lab. David Baker was awarded the Nobel Prize in Chemistry in 2024 for developing their 

RoseTTAFold algorithm [5]. Its breakthrough strength is that it can predict protein structures 

efficiently using a three-track neural network system [2]. But, it has lower accuracy for long 

protein sequences. 

The ESMFold model is developed by Meta AI and is based on evolutionary-scale 

modeling [3]. It is designed to predict protein structures rapidly and has a good balance between 

speed and accuracy for best targeting medium sized protein sequences. Unfortunately, this 

creates long run times for short sequences and inaccuracies for long sequences. 

Finally, we have the I-TASSER (Iterative Threading ASSEmbly Refinement) algorithm. 

This algorithm predicts 3D protein structures by integrating template-based modeling with ab 

initio approaches. It has high accuracy and is widely used in structural biology. Even though it 

has consistent performance in CASP [4], it is computationally expensive and accuracy depends 

on template availability. This highly limits the opportunities that I-TASSER can provide for 

biologists. 
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Motivation and Methods 

AI Generated Protein Structure Predictions 

Finding physical protein structures through biological means is expensive and time 

intensive [6]. Although, this essential step in biology cannot be overlooked. Errors in protein 

folding cause diseases like Sickle Cell Anemia. Understanding protein structures aids in drug 

development and accurate predictions will improve biological research and clinical applications. 

Predicting protein structure through computational methods has become more prevalent 

and accurate recently because of the large cache of data that has been accumulating in recent 

years. The larger databases that sequence and create protein structures, the more accurate AI 

models become. But, AI creates a black box for researchers and creates more issues in a new 

way with tracing back data. The results that AI models present are extremely hard to trace back, 

making proving results difficult. 

To ensure that there is a safe way to compare AI generated models to real structure 

predictions done in a lab, we want to create a program that graphs overlap of an algorithm to a 

baseline model. Our goals are to evaluate and compare protein structure prediction algorithms, 

identify the best algorithm balancing accuracy and efficiency accessibility, improve future 

bioinformatics tools for faster and more accurate predictions, and provide an overall evaluation 

and proposed advancement of protein structure prediction algorithms. Gaining protein structure 

prediction accuracy for specific algorithms will not only help to defend the accuracy and 

preciseness of the models, but will also help to push prediction model creators to the most 

accurate areas of data collection, model structure, and many more important areas in the field. 

Comparing Algorithms 

A .pdb file can be downloaded through each algorithm and used for comparison. These 

files contain coordinates for each atom in the protein structure that was predicted. These 

coordinates can then be scaled accordingly and overlapped to see structural similarity. The unit 

of measurement that we used for testing structural similarly is RMSD (Root Mean Square 

Deviation). RMSD is calculated as… 

RMSD=(x2​−x1​)2+(y2​−y1​)2+(z2​−z1​)2​ 
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The RMSD of two structures gives a great baseline to see how far away each atom is to each 

other. We can then take an average of the RMSD for every atom to see the overall structural 

similarity.  

For a better understanding, an RMSD value between 0.0 to 1.0 Å indicates an excellent 

match, suggesting near-identical structures often seen when comparing experimental and 

high-quality predicted models. A value within the range of 1.0 to 2.0 Å represents good 

similarity, where structural differences are minimal and usually limited to side chain positions or 

slight backbone shifts. When the RMSD falls between 2.0 to 4.0 Å, it suggests moderate 

similarity, often reflecting conformational changes, flexible regions, or minor prediction errors. 

An RMSD value above 4.0 Å signifies significant differences, which could indicate structural 

inaccuracies in predictions, large conformational changes, or challenges in the modeling process. 

Hemoglobin (HBA1) 

​ Using Hemoglobin HBA1 [8] for the comparison of protein structure prediction 

algorithms provides a reliable benchmark. The gene name HBA1 encodes a protein with a length 

of 142 amino acids, which is an ideal size for structural comparison and can be handled by most 

prediction algorithms. It also has a complex structure, making it a great option to test high end 

algorithms. The amino acid sequence of HBA1 is… 

“MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK

KVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASL

DKFLASVSTVLTSKYR” 

HBA1 plays a critical biological function by facilitating the transport of oxygen from the lungs 

to various peripheral tissues, making it a valuable target for evaluating the accuracy of structural 

prediction algorithms. 

Program Description 

Coding Environment 

In order to code these visualizations and comparisons, we needed to use a powerful 

package that would allow us to overlap these visualizations on a 3 dimensional plane with user 

intractability. We used python to code our program seeing as we are the most familiar with 
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python and it is the best option for data analysis and manipulability, where our coding was done 

in the Visual Studio Code IDE. 

​ We used the ‘plotly’ package to plot the graphical comparisons with residue distance. 

This allows us to create interactive visualizations that users can look over to see which areas 

have the greatest distance from the baseline structure.  

​ We also used the ‘nglview’ package to create 3 dimensional interactive visualizations of 

the protein structure overlaps. Creating this visualization helps us to better understand variability 

in protein structures. In future work, researchers would be able to take these visualizations and 

make quaternary structures to see more clearly how individual protein structures interact with 

each other. The packages ‘numpy’ and ‘Bio’ were used throughout to help make biological 

computations and assess amino acid sequence specific data, comparisons, and visualizations. 

Our Code 

​ The motivation for our code was to compare both overall RMSD and RMSD for each 

individual residue. Geographical information from each protein structure prediction algorithm 

was compared to a baseline protein structure for HBA1 through a .pdb file. We created two 

python files which produce a line graph of RMSD for the compared protein structure, and a 

visualization of the overlapping protein structure graphs. Both of these graphs are interactable, 

meaning that the 3d structure can be spun, zoom in and out, and hover over specific residues to 

get their information, while the line graph will tell which residue correlates to which data point.  

​ Our line graph was created through a python file named ‘GraphStructureComparison.py’. 

This code compares the structural similarity of two protein models by calculating the per-residue 

RMSD. It uses Biopython to parse and extract the C-alpha atoms (representing the backbone 

structure) from two PDB files: a baseline model and a predicted model. After confirming that 

both structures have the same number of C-alpha atoms, it calculates the RMSD for each residue 

by measuring the Euclidean distance between corresponding atoms. The results are stored and 

plotted using Plotly to create an interactive graph in a separate window through the local 

machine. The graph displays residue numbers on the x-axis and RMSD values on the y-axis, 

with hover functionality to show precise residue information. This visualization helps assess 

structural deviations and identify regions of significant difference between the baseline and 

predicted models.  
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Figure 1: Python code for graphically comparing RMSD distance from the baseline model through an 

interactive line graph.  

Our 3 dimensional structure comparison model was created through a file named 

‘VisualGraphComparison.py’. This code uses the Biopython and NGLView packages to perform 

structural alignment and comparison of two protein models. It begins by reading and parsing two 

PDB files, one representing the baseline model and the other a predicted structure. The program 

extracts the C-alpha atoms from both structures, which represent the protein backbone and are 

commonly used for structural comparisons. After confirming that both models have the same 

number of C-alpha atoms, the code applies a superimposition using the Superimposer class to 

minimize the RMSD. The calculated RMSD value is then printed, indicating how closely the 

predicted structure aligns with the baseline. The aligned model is saved to a new file called 

"aligned_prediction.pdb" for further analysis. For visual inspection, the code uses NGLView to 

generate a 3D interactive visualization where the baseline model is shown in blue and the aligned 

prediction in red using a cartoon representation. This visualization allows users to rotate, zoom, 

and explore the structural differences, providing both a quantitative and qualitative 

understanding of the model alignment. 
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Figure 2: Python code for generating 3d interactive visualization of prediction and baseline structures, as 

well as finding the average RMSD. 

Data 
The data was collected through the online websites of all the algorithms used in this 

research project. While AlphaFold2 and ESMFold were able to produce results through their 

online website, both RoseTTAFold and I-TASSER needed accounts to be created and results to 

be sent through email. I-TASSER required a scholarly email in order for results to be processed 

and sent to the user. 

The data was collected by downloading a .pdb file which was then used for our analysis. 

Each file has an introductory section which gives credit to the creator and other important 

information. The raw data from the file is formatted in the way that it contains the element, 

amino acid, chain name, sequence number, and then x, y, and z coordinates respectively. 
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Figure 3: Example of an .pdb file. 

These coordinates can then be calibrated for comparison between other .pdb files which 

also contain this formatted information.  

Testing and Results 

AlphaFold2 

The usability of the AlphaFold2 website was extremely high. Given a single search bar, 

you can search either their database of protein models or submit a sequence of your own which 

would give results between 5-10 minutes. There did not appear to be any length constraints for a 

given sequence. The results produced only a singular model which had a color overlay to show 

structure prediction confidence at each residue.  

The results of the AlphaFold2 model [9] proved the best overlap with the compared 

model with an average RMSD of 0.049 Å and a high 17.990 Å. This extremely high overlap 

shows the high correlation between the AlphaFold2 predicted model and the AlphaFold2 

database baseline model. 
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​ Figure 4: Line graph of AlphaFold2 RMSD. Average of 0.049 Å, high of 17.990 Å. 

 

 

​ Figure 5: Visual overlap of baseline (blue) and AlphaFold2 model (red). 
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RoseTTAFold 

The usability of the RoseTTAFold website was moderate. I sequence length between 26 

and 501 was required which limited the protein sequence length the most out of all the 

algorithms. Results were not given through the website, but sent through an inputted email after 

account creation was made. Runtime isn’t calculable because of sending the results through 

email. The results produced five models of best confidence which each had a color overlay to 

show structure prediction confidence at each residue. I picked model 4 which seemed to have the 

lowest overall predicted error based on a graph of error produced by the algorithm. 

The results of the RoseTTAFold model [10] proved the worst overlap with the baseline 

model with an average RMSD of 0.621 Å and a high 51.129 Å. Although this is the worst 

overlap of the compared algorithms in this study, an average RMSD of 0.621 Å is still an 

excellent match to the baseline model. 

 

Figure 6: Line graph of RoseTTAFold RMSD. Average of 0.621 Å, high of 51.129 Å. 
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Figure 7: Visual overlap of baseline (blue) and RoseTTAFold model (red). 

ESMFold 

The usability of the ESMFold website was high and similar to that of the AlphaFold2 

website. Since they are both created by large companies, Google and Meta, we infer that the 

companies have more workers to make their websites look clean and work well. Like the 

AlphaFold2 website, there did not seem to be a requirement for sequence length. No estimated 

time for computation was given and only one prediction model was produced.  

The results of the ESMFold model [11] provided a moderate overlap with the baseline 

model giving an average RMSD of 0.324 Å and a high 44.134 Å.  
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Figure 8: Line graph of ESMFold RMSD. Average of 0.324 Å, high of 44.134 Å. 

 

Figure 9: Visual overlap of baseline (blue) and ESMFold model (red). 
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I-TASSER 

The usability of the I-TASSER website was very low. In order to run a prediction through 

their website, you need to create an account and have a scholarly email. Email verification is 

required. The sequence length must be in the range of 10-1500. These limitations offer lower 

options for researchers who want to use this algorithm for their analysis. No estimated time for 

computation was given because the results were sent through email and 5 separate prediction 

models were produced and one was ranked the best, which we used for comparison. 

The results of the I-TASSER model [12] provided a moderate overlap with the baseline 

model giving an average RMSD of 0.419 Å and a high 114.183 Å.  

 

Figure 10: Line graph of I-TASSER RMSD. Average of 0.419 Å, high 114.183 Å. 

13 



 

Figure 11: Visual overlap of baseline (blue) and I-TASSER model (red). 

Results 

After running our code and having firsthand experiences with the websites of the 

algorithm creators, we created a table to compare each algorithm's strengths and weaknesses. 

Data points were also collected through various articles [1] - [4] and the CASP results [13]. 

 AlphaFold2 RoseTTAFold ESMFold I-TASSER 

Time 

Complexity 

(Worst Case) 

O(L3) O(L2) to O(L3) O(L2) O(L) to O(L2) 

Public Access Open-source Open-source  Open-source Not fully 

open-source 

Accuracy High  High  Moderate Moderate 

Speed  Slow   Moderate Fast  Fast  

RMSD 0.049 Å 0.621 Å 0.324 Å 0.419 Å 

Figure 12: Table of results comparing top protein structure prediction algorithms. 
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Conclusion  

Limitations of our Data 

​ While our actual techniques of comparison are sound, the specific baseline protein 

structure that we used provides a limitation for this research project which needs to be 

mentioned. The baseline model that we used was derived from the AlphaFold2 database itself. 

This database consists of a massive amount of models for proteins based on lab trials, not only 

AI predictions. By using the model created through biological means rather than computationally 

predictive ones, we are able to gain a strong baseline model for comparison. The caveat in using 

this model is that it is from the AlphaFold2 database itself. This proves complications and bias 

for then using that model to compare against the predicted model from the AlphaFold2 

algorithm. In simpler words, we are then comparing the AlphaFold2 model database, to the raw 

predicted model using their predictive algorithm. While they should be separate in of themselves, 

the AlphaFold2 algorithm may have been trained with the database model and other similar 

models which give it an advantage in comparison to our other compared models. That being said, 

AlphaFold2 has proved the best database for predictive modeling and the most reputable 

algorithms for protein structure prediction. Although creating our own baseline through lab 

analysis would be the best for comparison, provided the limitations of time and availability this 

is the best comparison model we could use to our knowledge.  

​ Another limitation is that we compared these top algorithms based on a single protein, 

HBA1. Although this is a great protein to give a reference into these algorithms performance and 

usability, increasing our data and comparing each algorithm from a large set of proteins would 

increase our confidence in the results.  

Analysis of Results 

​ Each algorithm gave its own advantages and disadvantages. While AlphaFold2 seemed to 

outperform every other algorithm in terms of results, the process was computationally expensive, 

making the option more unreasonable for the longevity of real world lab work. Although the 

convenience of having a protein structure database integrated into the website is a huge 

advantage for biologists. RoseTTAFold provided a great option for biologists in terms of 

balancing complexity and accuracy while also using an innovative solution through their 

three-track neural network system. But for long sequences, RoseTTAFold falters. In our analysis, 

15 



RoseTTAFold produced the worst overlap of structure, even with a sequence of only 142 amino 

acids. ESMFold makes great results for their balanced algorithm. Our results show that they’ve 

coded a fast algorithm which gives solid results, especially for small algorithms. I-TASSER 

proved the most inconvenient in terms of accessibility and test results. While leveraging their 

algorithm to be fast, they’ve sacrificed results quality and produced the second worst structure 

overlap with our baseline structure. 

​ While each algorithm is different, we cannot say whether one is better or worse than the 

other. To make the most of our results, biologists should analyze each algorithm and search for 

an algorithm that best overlaps with their specific needs. At the moment, no algorithm is a 

one-size-fits-all. To better advance the field, we should make the advantages and disadvantages 

of protein structure prediction algorithms transparent. There is not enough information on each 

individual website about their own optimal performance range. This is why external analysis of 

algorithms is needed. The reason for this covertness in the field is unknown and should be 

further investigated.  

Future Works 

Open-source Analysis of Algorithms 

​ Increasing the transparency of algorithms advantages and disadvantages is extremely 

important for biologists to make educated decisions pertaining to their algorithm of choice. 

Making an open-source website where users can gain information on updated versions of protein 

structure prediction algorithms and be able to compare algorithm results of their own, will help 

inform the public about which algorithm is best for their specific case. Not only will this help the 

areas in research which will use these algorithms, but it will encourage algorithm creating 

companies to progress their algorithms further, explaining weak points and areas which could be 

improved upon and increasing competitiveness between top protein structure prediction 

algorithm companies or research labs. An increased competitiveness in this field would force top 

companies to improve algorithms more rapidly to stay at the top. This platform would also be a 

place for users to suggest new ideas, share their algorithms, and help find others who would want 

to collaborate together, improving the field more rapidly. 
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